Previsão por técnicas de suavização Este site é uma parte dos objetos de aprendizagem de JavaScript E-laboratórios para tomada de decisão. Outros JavaScript nesta série são classificados em diferentes áreas de aplicações na seção MENU nesta página. Uma série de tempo é uma seqüência de observações que são ordenadas no tempo. Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. As técnicas amplamente utilizadas são suavização. Estas técnicas, quando devidamente aplicadas, revelam mais claramente as tendências subjacentes. Insira a série de tempo em ordem de linha em seqüência, começando pelo canto superior esquerdo e o (s) parâmetro (s) e, em seguida, clique no botão Calcular para obter uma previsão de um período antecipado. As caixas em branco não são incluídas nos cálculos, mas os zeros são. Ao inserir seus dados para mover de célula para célula na matriz de dados use a tecla Tab não seta ou digite chaves. Características de séries temporais, que podem ser reveladas ao examinar seu gráfico. Com os valores previstos, eo comportamento residual, modelagem de previsão de condições. Médias móveis: As médias móveis classificam-se entre as técnicas mais populares para o pré-processamento de séries temporais. Eles são usados para filtrar o ruído branco aleatório dos dados, para tornar a série de tempo mais suave ou mesmo para enfatizar certos componentes informativos contidos na série de tempo. Suavização Exponencial: Este é um esquema muito popular para produzir uma Série de Tempo suavizada. Enquanto nas Médias Móveis as observações passadas são ponderadas igualmente, a Suavização Exponencial atribui pesos exponencialmente decrescentes à medida que a observação avança. Em outras palavras, as observações recentes recebem relativamente mais peso na previsão do que as observações mais antigas. O Double Exponential Smoothing é melhor para lidar com as tendências. Triple Exponential Smoothing é melhor no manuseio de tendências de parabola. Uma média móvel exponencialmente ponderada com uma constante de suavização a. Corresponde aproximadamente a uma média móvel simples de comprimento (isto é, período) n, onde a e n estão relacionados por: a 2 (n1) OR n (2 - a) a. Assim, por exemplo, uma média móvel exponencialmente ponderada com uma constante de suavização igual a 0,1 corresponderia aproximadamente a uma média móvel de 19 dias. E uma média móvel simples de 40 dias corresponderia aproximadamente a uma média móvel exponencialmente ponderada com uma constante de alisamento igual a 0,04878. Suavização Linear Exponencial de Holts: Suponha que a série de tempo não é sazonal, mas exibe tendência. Holts método estima tanto o nível atual ea tendência atual. Observe que a média móvel simples é caso especial da suavização exponencial, definindo o período da média móvel para a parte inteira de (2-Alpha) Alpha. Para a maioria dos dados de negócios, um parâmetro Alpha menor que 0,40 é freqüentemente efetivo. No entanto, pode-se realizar uma busca de grade do espaço de parâmetro, com 0,1 a 0,9, com incrementos de 0,1. Então o melhor alfa tem o menor erro médio absoluto (erro MA). Como comparar vários métodos de alisamento: Embora existam indicadores numéricos para avaliar a precisão da técnica de previsão, a abordagem mais abrangente é o uso de comparação visual de várias previsões para avaliar a sua precisão e escolher entre os vários métodos de previsão. Nesta abordagem, é necessário plotar (usando, por exemplo, Excel) no mesmo gráfico os valores originais de uma variável de série temporal e os valores previstos de vários métodos de previsão diferentes, facilitando assim uma comparação visual. Você pode gostar de usar as Previsões Passadas por Técnicas de Suavização JavaScript para obter os valores de previsão anteriores com base em técnicas de suavização que usam apenas um único parâmetro. Os métodos Holt e Winters usam dois e três parâmetros, respectivamente, portanto, não é uma tarefa fácil selecionar os valores ótimos, ou até perto de ótimos, por tentativa e erros para os parâmetros. A suavização exponencial única enfatiza a perspectiva de curto alcance que define o nível para a última observação e é baseada na condição de que não há tendência. A regressão linear, que se ajusta a uma linha de mínimos quadrados aos dados históricos (ou dados históricos transformados), representa a faixa de longo alcance, que está condicionada à tendência básica. Holts linear suavização exponencial captura informações sobre tendência recente. Os parâmetros no modelo de Holts são níveis-parâmetro que devem ser diminuídos quando a quantidade de variação de dados é grande, e as tendências-parâmetro devem ser aumentadas se a tendência de direção recente é suportada pelo causal alguns fatores. Previsão de Curto Prazo: Observe que cada JavaScript nesta página fornece uma previsão de um passo adiante. Para obter uma previsão de duas etapas. Basta adicionar o valor previsto ao final dos dados de séries temporais e, em seguida, clicar no mesmo botão Calcular. Você pode repetir este processo por algumas vezes, a fim de obter as previsões de curto prazo necessárias. Market Data Perguntas Exponencial Versus Simple Mover médias Hi Tom - Eu sou um assinante de vocês e queria saber se você tinha um gráfico ldquoconversionrdquo para converter o valor de tendência Em MAs exponenciais de período. Por exemplo, 10 Trend é praticamente igual a um EMA de 19 períodos, 1 Tendência para 200EMA etc. Agradecemos antecipadamente. A fórmula para converter uma constante de alisamento de média móvel exponencial (EMA) para um número de dias é: 2 mdashmdashmdash-N 1 em que N é o número de dias. Assim, um EMA de 19 dias se enquadraria na fórmula como se segue: 2 2 mdashmdashmdashmdash-mdashmdashmdash - 0.10 ou 10 19 1 20 Isto decorre da ideia de que a constante de alisamento é escolhida de modo a dar a mesma idade média dos dados Como seria feito em uma média móvel simples. Se você tivesse uma média móvel simples de 20 períodos, então a idade média de cada entrada de dados é 9.5. Pode-se pensar que a idade média deve ser 10, uma vez que é metade de 20, ou 10,5 desde que é a média dos números 1 a 20. Mas na convenção estatística, a idade do mais recente pedaço de dados é 0. Então Encontrar a idade média dos últimos vinte pontos de dados é feita encontrando a média desta série: Assim, a idade média dos dados em um conjunto de N períodos é: N - 1 mdashmdashmdashmdash - 2 Para a suavização exponencial, com uma constante de suavização de A , Resulta da matemática da teoria da soma que a idade média dos dados é: 1 - A mdashmdashmdashmdash - A Combinando estas duas equações: 1 - AN - 1 mdashmdashmdash mdashmdashmdashmdash A 2 podemos resolver para um valor de A que iguala um EMA para um comprimento médio móvel simples como: 2 A mdashmdashmdashmdash - N 1 Você pode ler uma das peças originais já escritas sobre este conceito indo para McClellanMTAaward. pdf. Lá, nós excerpt de P. N. Haurlanrsquos panfleto, ldquoMeasuring Trend Valuesrdquo. Haurlan foi uma das primeiras pessoas a usar médias móveis exponenciais para rastrear os preços das ações na década de 1960, e ainda preferimos sua terminologia original de uma Tendência XX, ao invés de chamar uma média móvel exponencial por alguns dias. Uma grande razão para isso é que com uma média móvel simples (SMA), você está apenas olhando para trás um certo número de dias. Qualquer coisa mais antiga do que esse período lookback não fator no cálculo. Mas com um EMA, os dados antigos nunca desaparece torna-se cada vez menos importante para o valor da média móvel. Para entender por que os técnicos se preocupam com EMAs versus SMAs, um rápido olhar para este gráfico fornece alguns uma ilustração da diferença. Durante movimentos de tendência para cima ou para baixo, uma tendência de 10 e uma SMA de 19 dias em grande parte estarão corretas juntas. É durante períodos em que os preços são agitados, ou quando a direção da tendência está mudando, que vemos os dois começarem a se separar. Nesses casos, a Tendência 10 geralmente abraçar a ação de preços mais de perto e, portanto, estar em melhor posição para sinalizar uma mudança quando o preço cruza-lo. Para muitas pessoas, esta propriedade faz EMAs ldquobetterrdquo do que SMAs, mas ldquobetterrdquo está no olho do espectador. A razão pela qual os engenheiros têm usado EMAs há anos, especialmente em eletrônica, é que eles são mais fáceis de calcular. Para determinar todayrsquos novo valor EMA, você só precisa yesterdayrsquos valor EMA, a constante de suavização, e todayrsquos novo preço de fechamento (ou outro datum). Mas para calcular um SMA, você tem que saber cada valor de volta no tempo para todo o período de lookback. Simple Vs. As médias móveis são mais do que o estudo de uma seqüência de números em ordem sucessiva. Os primeiros praticantes da análise de séries temporais estavam mais preocupados com números de séries temporais individuais do que com a interpolação desses dados. Interpolação. Na forma de teorias de probabilidade e análise, veio muito mais tarde, à medida que os padrões foram desenvolvidos e as correlações descobertas. Uma vez compreendidas, várias curvas e linhas em forma foram desenhadas ao longo da série de tempo numa tentativa de prever onde os pontos de dados poderiam ir. Estes são agora considerados métodos básicos atualmente utilizados pelos comerciantes de análise técnica. Análise de gráficos pode ser rastreada até o século 18 Japão, mas como e quando as médias móveis foram aplicadas pela primeira vez aos preços de mercado continua a ser um mistério. É geralmente entendido que as médias móveis simples (SMA) foram usadas muito antes de médias móveis exponenciais (EMA), porque EMAs são construídos em SMA quadro eo continuum SMA foi mais facilmente compreendido para fins de plotagem e acompanhamento. Média Móvel Simples (SMA) As médias móveis simples tornaram-se o método preferido para rastrear os preços de mercado porque são rápidos de calcular e fáceis de entender. Os primeiros praticantes de mercado operavam sem o uso de métricas de gráficos sofisticados em uso hoje, então eles dependiam principalmente dos preços de mercado como seus únicos guias. Eles calcularam os preços de mercado à mão, e graficou esses preços para denotar tendências e direção do mercado. Este processo foi bastante tedioso, mas provou ser bastante rentável com a confirmação de estudos futuros. Para calcular uma média móvel simples de 10 dias, basta adicionar os preços de fechamento dos últimos 10 dias e dividir por 10. A média móvel de 20 dias é calculada adicionando os preços de fechamento ao longo de 20 dias e dividindo por 20 e em breve. Esta fórmula não é apenas baseada em preços de fechamento, mas o produto é uma média de preços - um subconjunto. As médias móveis são chamadas de movimento porque o grupo de preços usado no cálculo se move de acordo com o ponto no gráfico. Isto significa dias velhos são deixados cair em favor de dias novos do preço de fechamento, assim que um cálculo novo é sempre necessário que corresponde ao frame de tempo da média empregada. Assim, uma média de 10 dias é recalculada adicionando o novo dia e deixando cair o 10o dia, eo nono dia é deixado cair no segundo dia. (EMA) A média móvel exponencial tem sido refinado e mais comumente usado desde a década de 1960, graças aos experimentos anteriores praticantes com o computador. A nova EMA se concentraria mais nos preços mais recentes do que em uma longa série de pontos de dados, como a média móvel simples exigida. EMA atual ((Preço (atual) - EMA anterior)) X multiplicador) EMA anterior. O fator mais importante é a constante de suavização que 2 (1N) onde N é o número de dias. Uma EMA de 10 dias 2 (101) 18.8 Isso significa que uma EMA de 10 períodos pondera o preço mais recente 18,8, um EMA de 20 dias de 9,52 e um peso de EMA de 50 dias de 3,92 no dia mais recente. A EMA trabalha ponderando a diferença entre o preço dos períodos atuais e a EMA anterior e adicionando o resultado à EMA anterior. Quanto mais curto o período, mais peso é aplicado ao preço mais recente. Fitting Lines Por estes cálculos, pontos são plotados, revelando uma linha de montagem. Linhas de montagem acima ou abaixo do preço de mercado significam que todas as médias móveis são indicadores de atraso. E são usados principalmente para seguir as tendências. Eles não funcionam bem com os mercados de gama e períodos de congestionamento, porque as linhas de montagem não denotam uma tendência devido a uma falta de maiores ou mais baixos evidentes baixos. Além disso, linhas de ajuste tendem a permanecer constantes sem sugestão de direção. Uma linha de montagem crescente abaixo do mercado significa um longo, enquanto uma linha de montagem caindo acima do mercado significa um curto. (Para obter um guia completo, leia nosso Tutorial de Moving Average.) O objetivo de empregar uma média móvel simples é detectar e mensurar as tendências alisando os dados usando os meios de vários grupos de preços. Uma tendência é manchada e extrapolada em uma previsão. O pressuposto é que os movimentos de tendências anteriores continuarão. Para a média móvel simples, uma tendência de longo prazo pode ser encontrada e seguida muito mais fácil do que uma EMA, com suposição razoável de que a linha de ajuste será mais forte do que uma linha de EMA devido ao foco mais longo sobre os preços médios. Um EMA é usado para capturar movimentos de tendência mais curtos, devido ao foco nos preços mais recentes. Por este método, um EMA suposto para reduzir quaisquer defasagens na média móvel simples para que a linha de ajuste vai abraçar os preços mais perto do que uma simples média móvel. O problema com a EMA é o seguinte: o seu propenso a pausas de preços, especialmente durante os mercados rápidos e períodos de volatilidade. A EMA funciona bem até que os preços rompam a linha de montagem. Durante os mercados de maior volatilidade, você poderia considerar o aumento da duração do termo médio móvel. Pode-se até mudar de um EMA para um SMA, uma vez que o SMA suaviza os dados muito melhor do que um EMA devido ao seu foco em meios de longo prazo. Indicadores de Tendência Como indicadores de atraso, as médias móveis servem bem como linhas de suporte e resistência. Se os preços despencarem abaixo de uma linha de 10 dias de ajuste em uma tendência ascendente, as chances são boas de que a tendência de alta pode estar diminuindo, ou pelo menos o mercado pode estar se consolidando. Se os preços quebrar acima de uma média móvel de 10 dias em uma tendência de baixa. A tendência pode estar diminuindo ou se consolidando. Nestes casos, empregue uma média móvel de 10 e 20 dias em conjunto e aguarde a linha de 10 dias cruzar acima ou abaixo da linha de 20 dias. Isso determina a próxima direção de curto prazo para os preços. Para períodos de longo prazo, observe as médias móveis de 100 e 200 dias para direções de longo prazo. Por exemplo, usando as médias móveis de 100 e 200 dias, se a média móvel de 100 dias cruza abaixo da média de 200 dias, sua chamada cruz de morte. E é muito bearish para preços. Uma média móvel de 100 dias que ultrapassa uma média móvel de 200 dias é chamada de cruz de ouro. E é muito otimista para os preços. Não importa se um SMA ou um EMA é usado, porque ambos são indicadores de tendência seguinte. É apenas a curto prazo que a SMA tem ligeiros desvios em relação à sua contraparte, a EMA. Conclusão As médias móveis são a base da análise de gráficos e séries temporais. As médias móveis simples e as médias móveis exponenciais mais complexas ajudam a visualizar a tendência alisando os movimentos de preços. A análise técnica é por vezes referida como uma arte em vez de uma ciência, que levam anos para dominar. (Saiba mais em nosso Tutorial de Análise Técnica.) Tipo de imposto incidente sobre ganhos de capital incorridos por pessoas físicas e jurídicas. Os ganhos de capital são os lucros que um investidor. Uma ordem para comprar um título igual ou inferior a um preço especificado. Uma ordem de limite de compra permite que traders e investidores especifiquem. Uma regra do Internal Revenue Service (IRS) que permite retiradas sem penalidade de uma conta IRA. A regra exige que. A primeira venda de ações por uma empresa privada para o público. IPOs são muitas vezes emitidos por empresas menores, mais jovens à procura da. DebtEquity Ratio é o rácio da dívida utilizado para medir a alavancagem financeira de uma empresa ou um rácio da dívida utilizado para medir um indivíduo. Um tipo de estrutura de compensação que os gestores de fundos hedge normalmente empregam em que parte da compensação é baseado no desempenho. Qual é a diferença entre uma média móvel simples e uma média móvel exponencial A única diferença entre estes dois tipos de média móvel é a sensibilidade cada mostra A alterações nos dados utilizados no seu cálculo. Mais especificamente, a média móvel exponencial (EMA) atribui uma maior ponderação aos preços recentes do que a média móvel simples (SMA), enquanto a SMA atribui igual ponderação a todos os valores. As duas médias são similares porque são interpretadas da mesma maneira e são usadas geralmente por comerciantes técnicos para alisar para fora flutuações do preço. O SMA é o tipo mais comum de média utilizado pelos analistas técnicos e é calculado dividindo a soma de um conjunto de preços pelo número total de preços encontrados na série. Por exemplo, uma média móvel de sete períodos pode ser calculada adicionando os seguintes sete preços juntos e depois dividindo o resultado por sete (o resultado também é conhecido como média aritmética média). Exemplo Dado as seguintes séries de preços: 10, 11, 12, 16, 17, 19, 20 O cálculo de SMA seria assim: 10111216171920 105 SMA de 7 períodos 1057 15 Uma vez que as EMAs colocam uma maior ponderação em dados recentes do que em dados mais antigos , Eles são mais reativos às mudanças de preço mais recentes do que SMAs são, o que torna os resultados de EMAs mais oportuna e explica por que a EMA é a média preferida entre muitos comerciantes. Como você pode ver a partir do gráfico abaixo, os comerciantes com uma perspectiva de curto prazo pode não se preocupam com qual média é utilizada, uma vez que a diferença entre as duas médias é geralmente uma questão de centavos simples. Por outro lado, os comerciantes com uma perspectiva de mais longo prazo devem dar mais consideração à média que eles usam, porque os valores podem variar em alguns dólares, o que é suficiente de uma diferença de preço para, em última instância, ser influente nos retornos realizados - especialmente quando você está Negociando uma grande quantidade de estoque. Como com todos os indicadores técnicos. Não há um tipo de média que um comerciante pode usar para garantir o sucesso, mas por meio de tentativa e erro, você pode, sem dúvida, melhorar o seu nível de conforto com todos os tipos de indicadores e, como resultado, aumentar suas chances de fazer sábias decisões comerciais. Para saber mais sobre médias móveis, consulte Noções básicas sobre médias móveis e princípios básicos de médias móveis ponderadas. Um tipo de imposto incidente sobre ganhos de capital incorridos por pessoas físicas e jurídicas. Os ganhos de capital são os lucros que um investidor. Uma ordem para comprar um título igual ou inferior a um preço especificado. Uma ordem de limite de compra permite que traders e investidores especifiquem. Uma regra do Internal Revenue Service (IRS) que permite retiradas sem penalidade de uma conta IRA. A regra exige que. A primeira venda de ações por uma empresa privada para o público. IPOs são muitas vezes emitidos por empresas menores, mais jovens à procura da. DebtEquity Ratio é o rácio da dívida utilizado para medir a alavancagem financeira de uma empresa ou um rácio da dívida utilizado para medir um indivíduo. Um tipo de estrutura de remuneração que os gestores de fundos de hedge normalmente empregam em que parte da remuneração é baseado no desempenho.
No comments:
Post a Comment